Exercise 41

Two sides of a triangle have lengths 12 m and 15 m . The angle between them is increasing at a rate of $2^{\circ} / \mathrm{min}$. How fast is the length of the third side increasing when the angle between the sides of fixed length is 60° ?

Solution

Draw a schematic of the triangle at a certain time.

The aim is to find $d x / d t$ when $\theta=60^{\circ}=\pi / 3$. The relationship between x and θ is given by the law of cosines.

$$
x^{2}=12^{2}+15^{2}-2(12)(15) \cos \theta
$$

Take the derivative of both sides with respect to time by using the chain rule.

$$
\begin{aligned}
& \frac{d}{d t}\left(x^{2}\right)=\frac{d}{d t}\left[12^{2}+15^{2}-2(12)(15) \cos \theta\right] \\
& 2 x \cdot \frac{d x}{d t}=-2(12)(15)(-\sin \theta) \cdot \frac{d \theta}{d t}
\end{aligned}
$$

Solve for $d x / d t$.

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{180 \sin \theta}{x} \frac{d \theta}{d t} \\
& =\frac{180 \sin \theta}{\sqrt{12^{2}+15^{2}-2(12)(15) \cos \theta}}\left(2 \times \frac{\pi}{180}\right) \\
& =\frac{2 \pi \sin \theta}{\sqrt{369-360 \cos \theta}}
\end{aligned}
$$

Therefore, when the angle between the sides of fixed length is 60°, the rate that the length of the third side changes with respect to time is

$$
\left.\frac{d x}{d t}\right|_{\theta=\pi / 3}=\frac{2 \pi \sin \frac{\pi}{3}}{\sqrt{369-360 \cos \frac{\pi}{3}}}=\frac{\pi}{3 \sqrt{7}} \frac{\text { meters }}{\text { minute }} \approx 0.395803 \frac{\text { meters }}{\text { minute }}
$$

